Adversarial Evolution and Deep Learning

for Computational Creativity

Alan Blair, UNSW

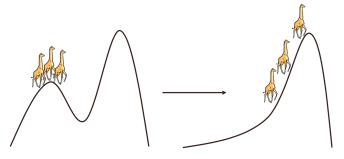
(joint work with Jacob Soderlund and Darwin Vickers)

Artwork of Hercule LeNet

Outline

- Adversarial Coevolution in Nature
- Adversarial Coevolution in Computation
- Artist-Critic Co-Evolution
- Interactive Evolution (GP Artist; Human Critic)
- Generative Adversarial Networks (CNN Artist; CNN Critic)
- Evolutonary Art (GP Artist; GP, NN or CNN Critic)
- Artistic Techniques and Styles
- Discussion/Conclusion

Adversarial Coevolution in Nature

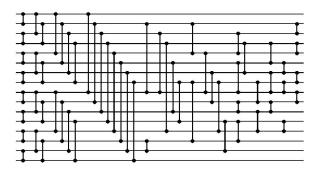


Gazelle adapts to run faster and escape from the Leopard
Leopard adapts to run faster and catch the Gazelle

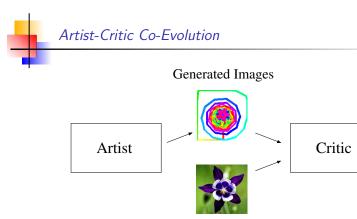
2/80

▶ Is Evolution gradual? Are there "Gaps" in the fossil record?

- > species remain in a meta-stable "niche" for a long time
- external change can lead to rapid adaptation
- > environmental change, or a new predator or competitor


- learning strategic games by self-play
- coevolutionary dynamics
 - can help to improve robustness
 - could also get stuck in oscillation or mode collapse

Coevolving Virtual Creatures (Sims, 1994)


- both body and controller of creature evolve
- > aim is to get the cube away from opponent

- coevolution: sorting networks vs. strings to be sorted
- > punctuated equilibria, can escape from local optima

5/80

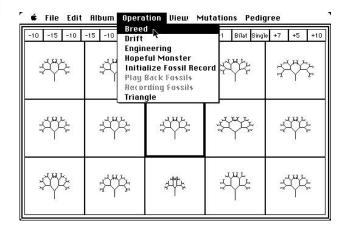
Real Images

- Critic is rewarded for distinguishing real images from those generated by the Artist
- Artist is rewarded for fooling the Critic into thinking that generated images are real

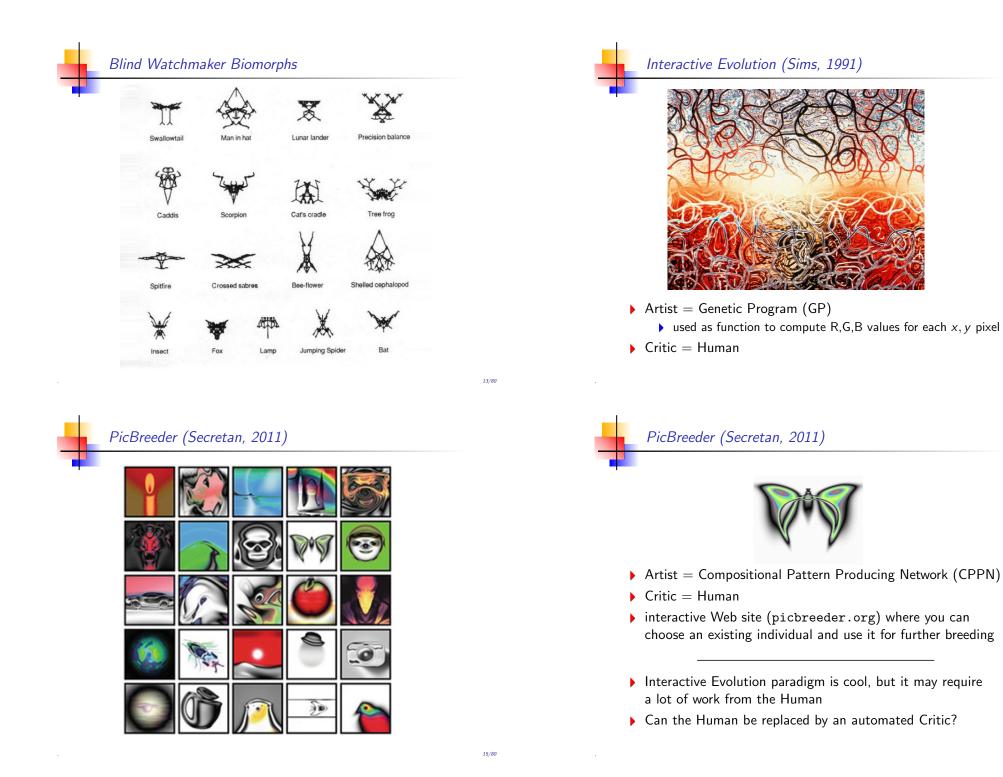
9/80

Artist-Critic Co-Evolution Paradigms

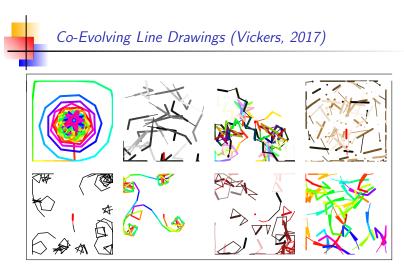
Critic	Method	Reference
Human	Blind Watchmaker	(Dawkins, 1986)
Human	Blind Watchmaker	(Sims, 1991)
Human	PicBreeder	(Secretan, 2011)
Human	EvoEco	(Kowaliw, 2012)
SOM	Artificial Creativity	(Saunders, 2001)
NN	Computational Aesthetics	(Datta, 2006)
NN	Computational Aesthetics	(Machado, 2008)
NN	Evolutionary Art	(Greenfield, 2009)
NN	Aesthetic Learning	(Li & Hu, 2010)
HERCL	Co-Evolving Line Drawings	(Vickers, 2017)
DCNN	HERCL Function/CNN	(Soderlund, 2018)
DCNN	Generative Adversarial Nets	(Goodfellow, 2014)
DCNN	Plug & Play Generative Nets	(Nguyen, 2016)
	Human Human Human SOM NN NN NN NN HERCL DCNN	HumanBlind WatchmakerHumanBlind WatchmakerHumanPicBreederHumanEvoEcoSOMArtificial CreativityNNComputational AestheticsNNEvolutionary ArtNNEvolutionary ArtNNAesthetic LearningHERCLCo-Evolving Line DrawingsDCNNGenerative Adversarial Nets



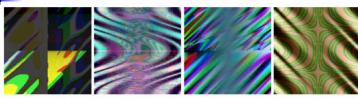
"All in all the creative act is not performed by the artist alone; the **spectator** brings the work in contact with the external world by deciphering and interpreting its inner qualifications and thus adds his contribution to the creative act."


10/80

Blind Watchmaker (Dawkins, 1986)


▶ the (Human) user is presented with 15 images

chosen image(s) are used to breed the next generation


Evolutionary Art (Fully Autonomous)

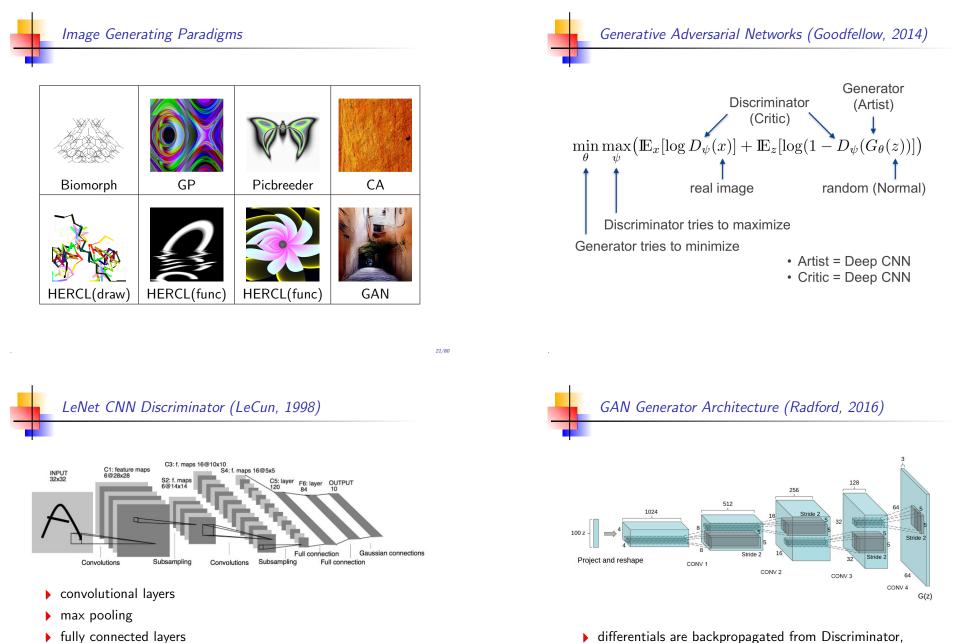
- Artist = Genetic Program (GP or HERCL)
 - artist used as a function to compute R,G,B values for each pixel location x, y
 - > alternatively, artist issues a series of drawing instructions
- Critic = GP (evolution) or Neural Network (backpropagation)
- Critic is presented with "real" images from a training set, and "fake" images generated by the Artist
- Critic is trained to produce output close to 1 for real images and close to 0 for generated images (or vice-versa)
- inputs to Critic
 - small number of statistical features extracted from the image
 - more recently, raw image, fed to DCNN

- ▶ Generator = Genetic Program (HERCL)
- Critic = GP (HERCL), using statistical features of image

Computational Aesthetics (Machado, 2008)

It.1 Pop.44 Ind.14 It.9 Pop.43 Ind.15 It.9 Pop.20 Ind.32 It.9 Pop.42 Ind.25

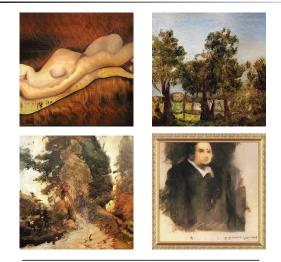
It.1 Pop.22 Ind.20 It.9 Pop.44 Ind.23 It.9 Pop.29 Ind.25 It.11 Pop.47 Ind.2


- Generator = Genetic Program
- Critic = 2-layer NN, using statistical features of image

Line Drawing Commands

0	TOGGLE		lift pen on/off page
1	MOVE	Х	move pen forward by x pixels ($0 \le x \le 15$)
2	TURN	x	turn × degrees clockwise
3	SIZE	р	set pen radius to p pixels $(1 \le p \le 4)$
4	COLOUR	V	set greyscale value [greyscale mode]
4	COLOUR	l h s	set colour in HSV colour space [colour mode]

- the output from the HERCL program is interpreted as a series of line drawing commands
- Critic is also a HERCL program, based on 20 statistical features extracted from the image

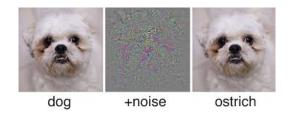

 differentials are backpropagated from Discriminator, through image and into Generator

• for Discriminator, only two outputs

GAN Generated Images (Radford, 2015)

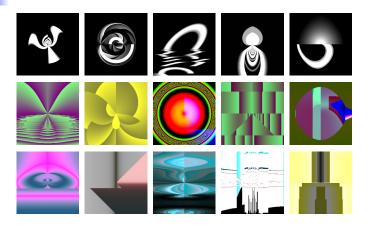
GAN Generated Art (Robbie Barrat; Obvious)

GAN is shown paintings by humans and asked to mimic the style



Neural Style Transfer (Gatys, 2015)

Another method for producing art in the style of a human artist


- ▶ Deep Networks are easily fooled
- Adversarial training improves quality of images, but can lead to well known problems of coevolutionary dynamics
 - oscillation
 - mode collapse

CP	PN vs. P	Pre-Tra	ined In	nageN	et (Ng	uyen,	2015)
						T	Ø
obeli	isk comic book	medicine chest	slot	car wheel	computer keyboard	hand blower	dial telephone
	S	0 0 0 <i>0 0</i> 0 0 0 0 0 0 0 0 0 0 0 0 0 0		۲			()
assault	rifle stethoscope	digital clock	soccer ball	bagel	pinwheel	crossword puzzle	punching bag
			HARABARAA Harabaraa	0	000		
pado	dle vacuum	accordion	screwdriver	photocopier	strawberry	tile roof	ski mask
				\sim			
four-po	oster African chameleon	sea snake	hair slide	nematode	school bus	panpipe	traffic light
			Ø	(0)	\rangle	<u>}</u>	
projec	tor pole	spotlight	green snake	trifle	volcano	chainlink fence	monarch

- ▶ Generator = HERCL program, as function from *x*, *y* to R,G,B
- Critic = LeNet CNN
- in each round, a new Critic is trained to distinguish real images from those previously produced by the Generator
- HERCL Generator is then evolved to produce an image for which the current Critic will assign the best possible score
- each round adds one new image to the gallery
- Generator can re-use code from previous images in gallery
- at the end of the process, Human chooses from the 600-1000 images generated

Adversarial Evolution and Deep Learning (Soderlund, 2018)

Artist = HERCL program as a function from x,y to R,G,B
Critic = Deep Convolutional Neural Network (LeNet)

Hierarchical Evolutionary Re-Combination Language (HERCL)

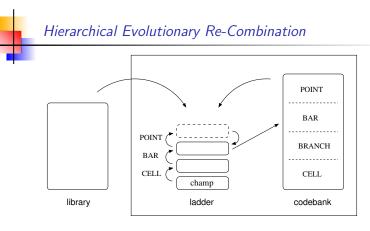
INPUT:	ickey
OUTPUT:	
MEMORY:	Minnie
REGISTERS:	[6][1]. [7]
STACK:	MM
CODE:	0[is . <sy^5>};i 8{^s-~:+7=;wo8 -wo]</sy^5>

- combines elements from Linear GP and Stack-based GP.
- > programs have access to a stack, registers and memory.
- each instruction is a single character, possibly preceded by a numerical (or dot) argument.

29/80

HERCL Commands

Input and Output i fetch INPUT to input buffer SCAN item from input buffer to stack s WRITE item from stack to output buffer W flush OUTPUT buffer 0 **Stack Manipulation and Arithmetic** PUSH new item to stack # \dots \mapsto \dots xPOP top item from stack ! $\dots x \mapsto \dots$ COPY top item on stack с $\dots x \mapsto \dots x.x$ SWAP top two items х $\dots y, x \mapsto \dots x, y$ ROTATE top three items $z, y, x \mapsto x, z, y$ у NEGATE top item $\dots x \mapsto \dots (-x)$ _ $\dots y, x \mapsto \dots (y+x)$ ADD top two items + MULTIPLY top two items $\dots y, x \mapsto \dots (y * x)$ *

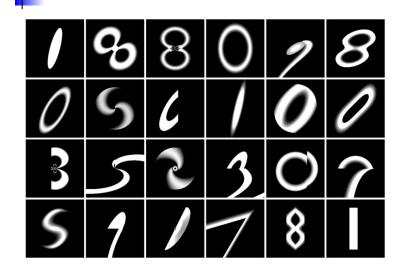

HERCL Commands **Registers and Memory** GET value from register <PUT value into register >INCREMENT register DECREMENT register v LOAD from memory location STORE to memory location } Jump, Test, Branch and Logic JUMP to specified cell (subroutine) j BAR line (RETURN on . | HALT on 8|) register is EQUAL to top of stack = register is **GREATER** than top of stack g if TRUE. branch FORWARD : if TRUE, branch BACK logical AND / logical OR ~ logical NOT &

HERCL Commands

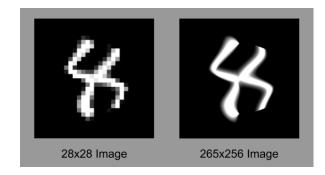
Mathematical Functions

r RECIPROCAL $..x \rightarrow ..1/x$ $..x \rightarrow ..\sqrt{x}$ SQUARE ROOT q $..x \mapsto ..e^x$ е EXPONENTIAL (natural) LOGARITHM $..x \mapsto ..\log_{e}(x)$ n $\ldots x \mapsto \ldots \sin^{-1}(x)$ а ARCSINE $..x \mapsto ..tanh(x)$ h TANH ROUND to nearest integer z push RANDOM value to stack ? **Double-Item Functions** % DIVIDE/MODULO ... $y, x \mapsto ... (y/x), (y \mod x)$ TRIG functions $..\theta, r \mapsto ..r \sin \theta, r \cos \theta$ t POLAR coords $.., y, x \mapsto ..$ atan $2(y, x), \sqrt{x^2 + y^2}$ р

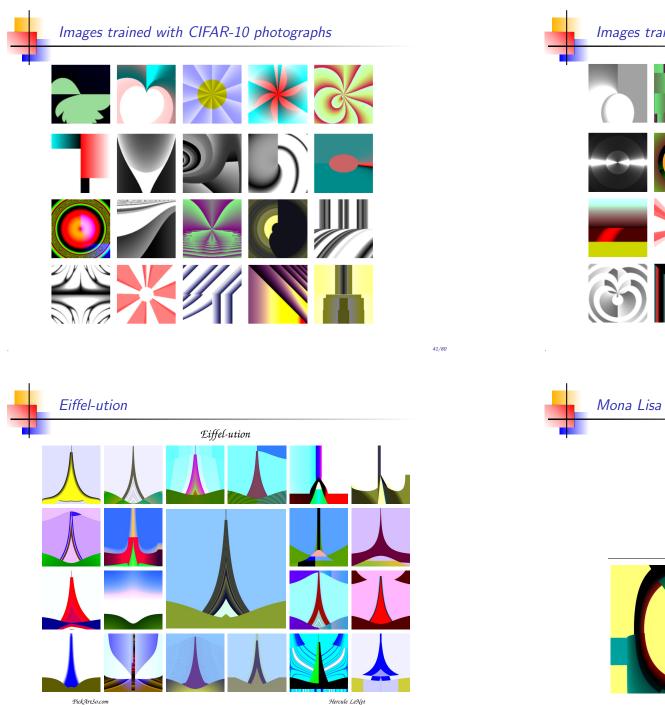
33/80



- Iarge crossover/mutation can be followed up by smaller ones.
- if top agent becomes fitter, it moves down to replace the one below it (which is moved to the codebank).
- if top agent exceeds max number of offspring, it is removed.
- good for co-evolution because it keeps the number of competing agents small while preserving diversity.

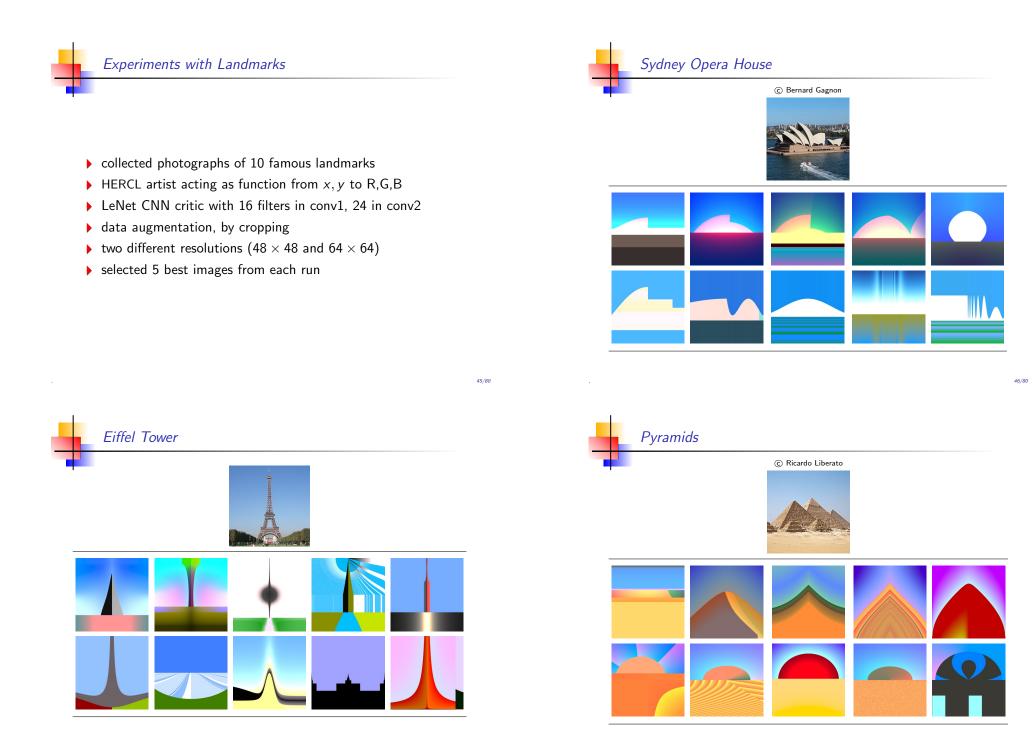


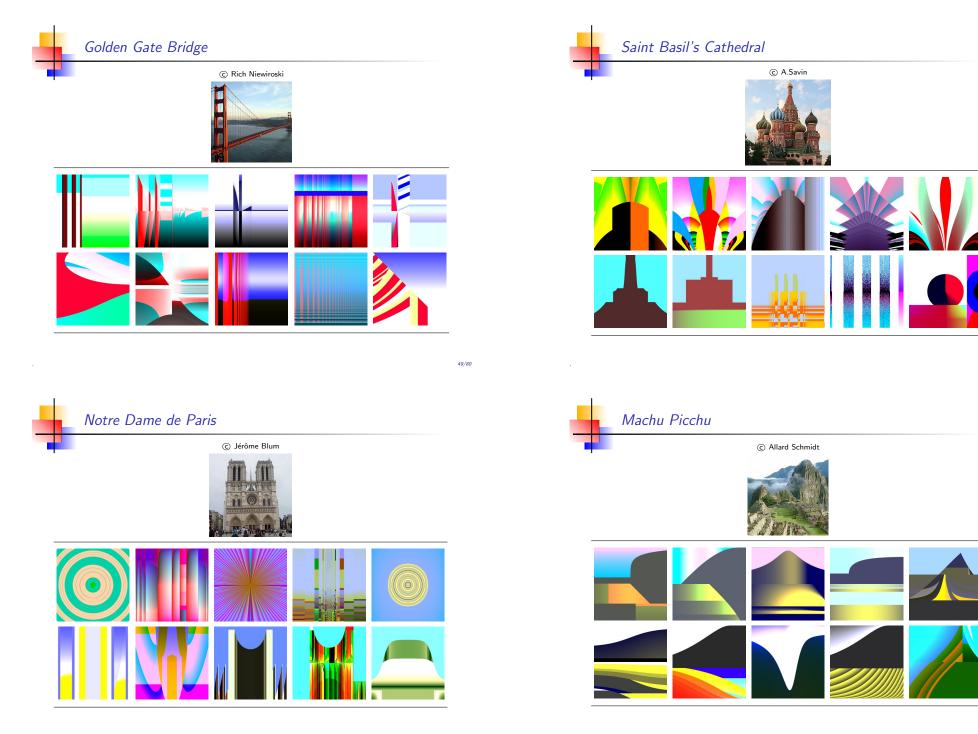
- Classification Tasks
 - sonar
 - ionosphere
 - promoters
 - Australian credit card fraud
 - Pima Diabetes prediction
- Control Tasks
 - double pole balancing
- String Processing Tasks
 - strcat
 - strlen
 - strchr
 - strcmp
- Other Tasks
 - Caesar & Vigenere Cipher
 - Postfix Calculator

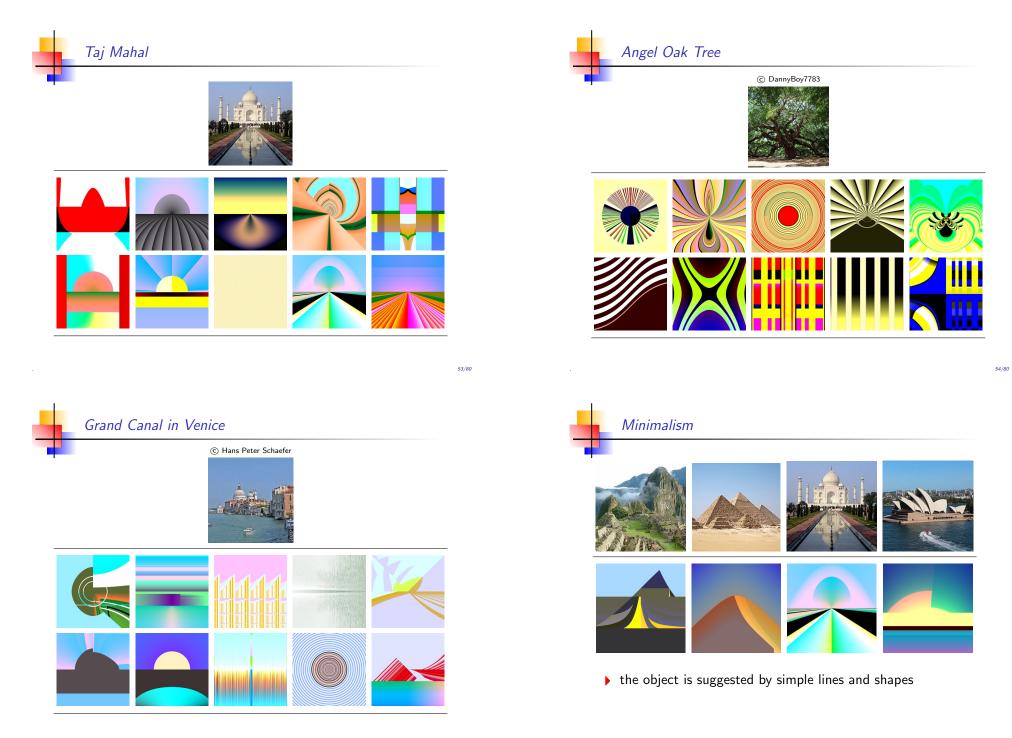


- images are fed to the critic at low resolution
- ▶ afterwards, images can be re-generated at high resolution

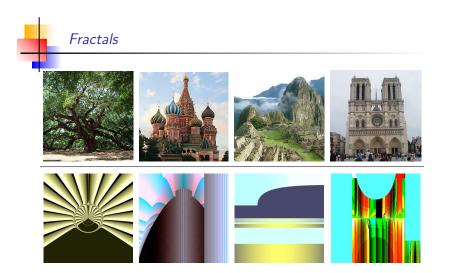
These ones don't look like digits, but may have some artistic merit

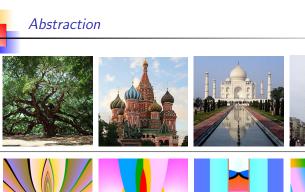

37/80



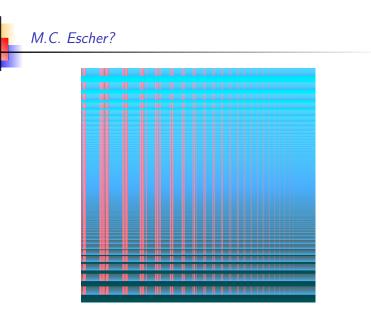

Hercule LeNet

Images trained with CIFAR-10 photographs *

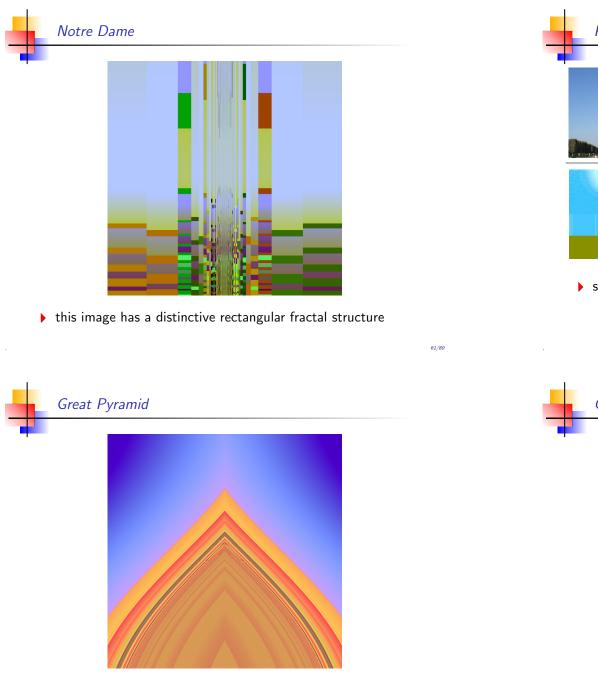




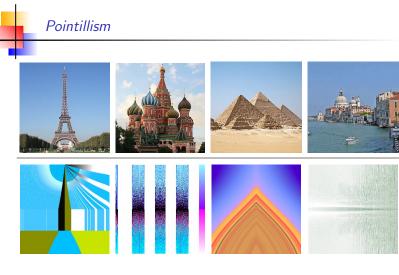
- > vibrant, fauvist colors; or sometimes near black-and-white
- enhanced contrast, halo effect



- Iow algorithmic complexity achieved through self-similarity
- fractal art, psychedelic art, stained glass or glass art

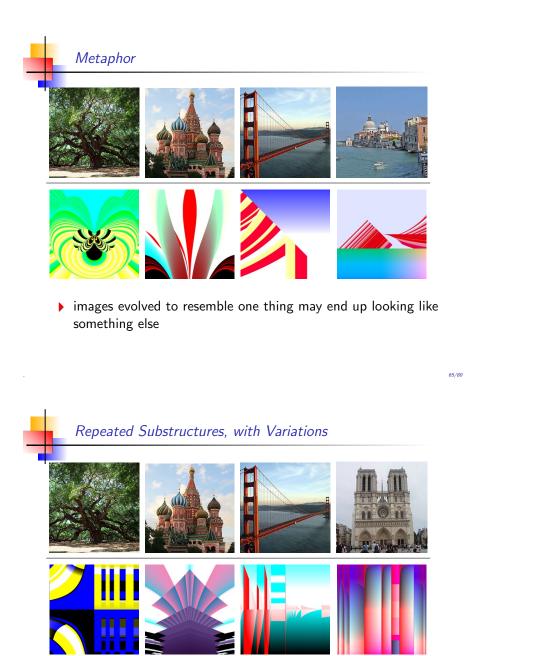


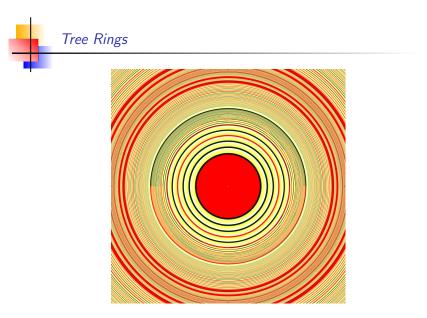
- abstract, rather than figurative rendition of the subject
- colors and shapes recombined in different patterns



where does the real beam end and the reflection begin?

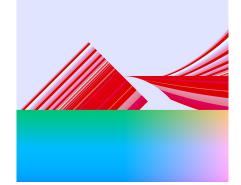
57/80


• can we see the individual grains of sand in the desert?


▶ sensitive function from *x*, *y* to R,G,B creates a pattern of dots

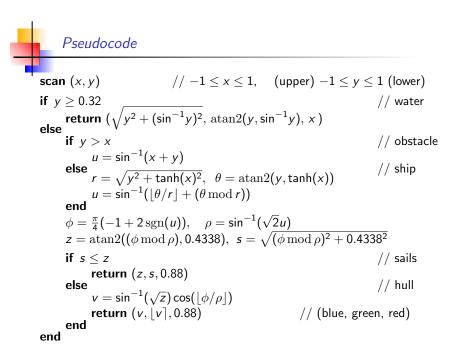
• is there some kind of structure, reflected in the water?

 imperfectly repeated substructures give the impression of having arisen from some natural process <text>



• the tree rings are so real, we can almost smell the sawdust!

Re-Combination, Variations on a Theme


 code for previous images in the gallery is made available for genetic re-combination, allowing the artist to revisit and further develop earlier themes Genetype to Phenotype Mapping

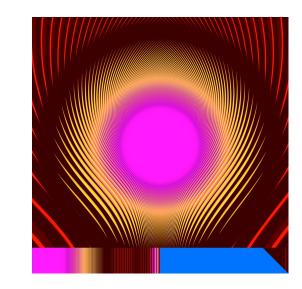
HERCL code: 0[!qatcz]

1[capwwwo.] 2[%]

3[is.32#>sg:1j|c>xg:hp2j|+a{>cpa%.4338#p>g~<:0j|xww.88#wo]

- interplay between evolution and deep learning
- > enhanced contrast, variations in color
- minimalism, abstraction, fauvism, fractals, pointillism, metaphor
- ability to surprise
- recombination of previous elements
- Iow algorithmic complexity, but realistic enough to fool the critic

"Imagination is a good servant, and a bad master. The simplest explanation is always the most likely."


- Hercule Poirot

69/80

Self-Portrait of AI Artist

Conclusion

- adversarial training / coevolution is a powerful technique
- coevolutionary dynamics observed in biology, evolutionary computation, game learning, sorting networks, GANs and evolutionary art
- deep neural network is a good choice for discriminator, but it is fruitful to try different kinds of generator
- possible future applications to areas such as text generation, cybersecurity, deception, modular evolving systems, credit assignment

Questions?